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Introduction 
With the advances in fast MR imaging techniques, it is possible to monitor the traversal of a 
MR contrast agent within tissues at short time intervals (of the order of a few seconds or less), 
thereby allowing the possibility to study blood flow at the tissue level. Dynamic contrast-
enhanced MRI (DCE MRI) is emerging as a promising approach for in vivo assessment of 
tissue microcirculation. Quantitative analysis of DCE MRI data has been performed by 
several approaches, of which the deconvolution approaches are popular among recent studies. 
Deconvolution analysis of DCE MRI data can in turn be broadly classified into two 
approaches: (i) numerical (model-independent) deconvolution [1,2] or (ii) model-dependent 
deconvolution [3-5]. For model-dependent deconvolution, tracer kinetics models (formulated 
with appropriate microcirculatory parameters) are employed to fit the tissue enhancement 
curves, and the deconvolution process becomes a parametric fitting process. In this 
presentation, we illustrate the formulation of such tracer kinetics models by walking through 
two example models encountered in the literature. 
 
Impulse Response and Deconvolution 
Assuming that blood flow and exchange within the tissue behaves linearly [6], the operational 
equation that relates the arterial plasma tracer concentration curve CA(t) as a function of time 
t, with the tissue concentration curve Ctiss(t), involves a convolution ⊗ : 

( ) ( ) ( )tRtCFtC ⊗= Aptiss ,                                                        (1) 
where Fp is blood (plasma) flow and R(t) is commonly called the impulse residue function. 
The process to figure out R(t) given CA(t) and Ctiss(t), is called deconvolution. In tracer 
kinetics modeling, R(t), which characterizes the  tissue-tracer system, is the object to model. 
Once a model for R(t) is assumed, in order to derive quantitative estimates, parameters 
defined in R(t) are adjusted using optimization schemes to best-fit Eq.(1) to the actual tissue 
enhancement curve. In the following, we assume that CA(t) and Ctiss(t) can be determined 
with confidence from DCE MR images (which is actually a significant challenge) and 
proceed with our discussion on modeling R(t).    
 
A conventional two-compartment model 
In DCE MRI, the commonly-used gadolinium tracer may diffuse from the blood plasma 
within capillaries into the tissue interstitial (but not into the cells in the tissue). Thus, we may 
attempt to account for these two tracer distribution spaces by defining a compartment for the 
intra-vascular space (denoted by p) and a compartment for the extra-vascular, extra-cellular 
space (e). Within each compartment, tracer concentration Cp or e(t) is assumed to be spatially 
homogenous and changes with time t only. The tracer mass balance equations can be given 
by 

( ) ( ) ( ) ( ) )(eepppepp
p

p ttCKtCKtCF
dt

tdC
v δ++−−= ←←                                 (2a) 

( ) ( ) ( )tCKtCK
dt

tdC
v eepppe

e
e ←← −=  ,                                                   (2b) 
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where vi and ve are respectively the fractional volumes of the vascular and interstitial spaces, 
and δ(t) is the Dirac Delta function which denotes a impulse input of unit concentration per 
time. The transfer constants for transcapillary exchange, Ke←p and Kp←e, should in general, 
differ by the partition coefficient [3,7]. However, for the typical tracers used in DCE imaging, 
the assumption of passive, iso-directional diffusion can be imposed and we may write Ke←p = 
Kp←e =  PS, where PS denotes the permeability-surface area product. Hence, Eqs (2a) and (2b) 
can be expressed in the more familiar form:     

( ) ( ) ( ) ( )[ ] )(eppp
p

p ttCtCPStCF
dt

tdC
v δ+−−=                                       (3a) 

( ) ( ) ( )[ ]tCtCPS
dt

tdC
v ep

e
e −=  .                                                  (3b) 

The initial conditions are  
 ( ) ( ) 00,00 ep ==== tCtC .                                                       (3c) 

Using the method of Laplace transform, Eqn.3 can be solved (will be illustrated) to yield the 
impulse residue function in a bi-exponential form  

( ) ( ) ( ) ( )tAtAtR βα exp1expCC −+= ,                                                   (4a) 
where  
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A two-compartment distributed-parameter (DP) model 
Suppose one would not want to consider a homogeneous vascular compartment, and would 
like to model the concentration of contrast agent as a function of both time and position (z) 
along the length (L) of a cylindrical capillary space. The mass-balance equations can be 
formulated as follows [8,9] (for an alternative formulation, see [10,11]) :  

( ) ( ) ( ) ( )[ ]ztCztCPSztC
z

LFztC
t

v ,,,, eppppp −−
∂
∂

−=
∂
∂                              (5a) 

( ) ( ) ( )[ ]ztCztCPSztC
t

v ,,, epee −=
∂
∂                                              (5b) 

with the initial and boundary conditions as 
( ) ( ) ( ) 00,,00,0,)(,0 epp ====>== tzCtzCttzC δ .                           (5c) 

In this form, the model accounts for the processes of convective transport and capillary-tissue 
exchange. 
 
Using the method of Laplace transform, Eqs 5 can be solved simultaneously and the impulse 
residue function can be given by [10,11] 
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where t1 (=vp /Fp) denotes the mean vascular transit time. Here, 
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and I1 is the modified Bessel function. The first-pass extraction fraction E of the DP model 
can be formally evaluated as E = 1 - exp(-PS/Fp) [10,11], which is consistent with the 
Renkin-Crone equation [12,13]. 
 
Some comments on the usage of the models 
The major difference between the formulation of the two models is the assumption of 
homogeneous mixing in the vascular compartment (capillary space), which sheds light on the 
applicability of these models. If a compartment is observed at time intervals much longer 
than the time needed for the movement/mixing of its contents, it would appear to be well-
mixed. In DCE MRI, each dynamic scan is an attempt to observe/monitor the retention of 
contrast agent within the tissue. If the time taken to traverse the vascular space of a particular 
tissue is short, and the time interval between scans (observations) is much longer, then the 
conventional compartmental model which assumes well-mixed compartments would be 
applicable. On the other hand, if the time interval between dynamic scans is comparable to 
the vascular transit time of the tissue, then we might not be able to assume that the vascular 
compartment is homogenous and the DP model might be appropriate.   
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